EconPapers    
Economics at your fingertips  
 

Superior Classification of Brain Cancer Types Through Machine Learning Techniques Applied to Magnetic Resonance Imaging

Mohammad Al-Batah, Mowafaq Salem Alzboon and Muhyeeddin Alqaraleh

Data and Metadata, 2025, vol. 4, 472

Abstract: Brain cancer remains one of the most challenging medical conditions due to its intricate nature and the critical functions of the brain. Effective diagnostic and treatment strategies are essential, particularly given the high stakes involved in early detection. Magnetic Resonance (MR) imaging has emerged as a crucial modality for the identification and monitoring of brain tumors, offering detailed insights into tumor morphology and behavior. Recent advancements in artificial intelligence (AI) and machine learning (ML) have revolutionized the analysis of medical imaging, significantly enhancing diagnostic precision and efficiency. This study classifies three primary brain tumor types—glioma, meningioma, and general brain tumors—utilizing a comprehensive dataset comprising 15,000 MR images obtained from Kaggle. We evaluated the performance of six distinct machine learning models: K-Nearest Neighbors (KNN), Neural Networks, Logistic Regression, Support Vector Machine (SVM), Decision Trees, and Random Forests. Each model's effectiveness was assessed through multiple metrics, including classification accuracy (CA), Area Under the Curve (AUC), F1 score, precision, and recall. Our findings reveal that KNN and Neural Networks achieved remarkable classification accuracies of 98.5% and 98.4%, respectively, significantly surpassing the performance of other evaluated models. These results underscore the promise of ML algorithms, particularly KNN and Neural Networks, in improving the diagnostic process for brain cancer through MR imaging. Future research will focus on validating these models with real-world clinical data, aiming to refine and enhance diagnostic methodologies, thus contributing to the development of more accurate, efficient, and accessible tools for brain cancer diagnosis and management.

Date: 2025
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:4:y:2025:i::p:472:id:1056294dm2025472

DOI: 10.56294/dm2025472

Access Statistics for this article

More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().

 
Page updated 2025-09-21
Handle: RePEc:dbk:datame:v:4:y:2025:i::p:472:id:1056294dm2025472