EconPapers    
Economics at your fingertips  
 

Exploring Computer-Aided Environmental Art Design: A Course Overview

Jie Bai and Ajmera Mohan Singh

Data and Metadata, 2025, vol. 4, 488

Abstract: Computer aided education is transforming with the integration of technology. In the context of advancing art education, there is a pressing need for innovation to enhance student engagement and learning outcomes. This study introduces an innovative approach by employing an Adaptive Kookaburra Optimized Dynamic Recurrent Neural Network (AKO-DRNN) with the framework of computer-aided environmental art design courses. The traditional methods of teaching art are being complemented by computer-aided tools and intelligent systems. This research explores the application of AKO-DRNN in revolutionizing art education, focusing on environmental art design. The primary goal is to develop an instructional system that leverages advanced algorithms to offer personalized, accurate aesthetic guidance, enhance creative exploration, and elevate students' practical skills in environmental art design. This study integrates AKO-DRNN into the course structure, which combines deep learning (DL) models with environmental design principles. The AKO-DRNN model utilizes dynamic recurrent networks optimized by a Kookaburra-inspired optimization algorithm to effectively analyze and predict artistic styles and features. This model provides real-time feedback and adaptive learning paths tailored to individual student needs. Implementation of the suggested model has demonstrated significant improvements in students’ design quality, creativity, and skill acquisition. The adaptive nature of the model enhances learning outcomes and engagement. The established framework offers a robust solution for modernizing art education in environmental design, fostering greater innovation and practical skills among students.

Date: 2025
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:4:y:2025:i::p:488:id:1056294dm2025488

DOI: 10.56294/dm2025488

Access Statistics for this article

More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().

 
Page updated 2025-09-21
Handle: RePEc:dbk:datame:v:4:y:2025:i::p:488:id:1056294dm2025488