Revolutionizing Blood Banks: AI-Driven Fingerprint-Blood Group Correlation for Enhanced Safety
Malik A. Altayar,
Muhyeeddin Alqaraleh,
Mowafaq Salem Alzboon and
Wesam T. Almagharbeh
Data and Metadata, 2025, vol. 4, 894
Abstract:
Identification of a person is central in forensic science, security, and healthcare. Methods such as iris scanning and genomic profiling are more accurate but expensive, time-consuming, and more difficult to implement. This study focuses on the relationship between the fingerprint patterns and the ABO blood group as a biometric identification tool. A total of 200 subjects were included in the study, and fingerprint types (loops, whorls, and arches) and blood groups were compared. Associations were evaluated with statistical tests, including chi-square and Pearson correlation. The study found that the loops were the most common fingerprint pattern and the O+ blood group was the most prevalent. Discussion: Even though there was some associative pattern, there was no statistically significant difference in the fingerprint patterns of different blood groups. Overall, the results indicate that blood group data do not significantly improve personal identification when used in conjunction with fingerprinting. Although the study shows weak correlation, it may emphasize the efforts of multi-modal based biometric systems in enhancing the current biometric systems. Future studies may focus on larger and more diverse samples, and possibly machine learning and additional biometrics to improve identification methods. This study addresses an element of the ever-changing nature of the fields of forensic science and biometric identification, highlighting the importance of resilient analytical methods for personal identification.
Date: 2025
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:4:y:2025:i::p:894:id:1056294dm2025894
DOI: 10.56294/dm2025894
Access Statistics for this article
More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().