EconPapers    
Economics at your fingertips  
 

Improving Cleaning of Solar Systems through Machine Learning Algorithms

Bahar Asgarova, Elvin Jafarov, Nicat Babayev, Vugar Abdullayev and Khushwant Singh

LatIA, 2024, vol. 2, 100

Abstract: The study focuses on the importance of maintaining photovoltaic (PV) systems for optimal performance in sustainable energy generation. It highlights the impact of dust accumulation on reducing system efficiency and proposes a method to predict system performance, aiding in scheduling cleaning activities effectively. Two prediction models are developed: one using time-series prediction techniques (LSTM, ARIMA, SARIMAX) to forecast Performance Ratio (PR), and another employing ensemble voting classifiers (RF, Log, GBM) to predict the need for cleaning. The SARIMAX model performs best, achieving high accuracy in PR prediction (R2 = 92.12%), while the classification model accurately predicts cleaning needs (91%). The research provides valuable insights for improving maintenance strategies and enhancing the efficiency and sustainability of PV systems.

Date: 2024
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:dbk:rlatia:v:2:y:2024:i::p:100:id:1062486latia2024100

DOI: 10.62486/latia2024100

Access Statistics for this article

More articles in LatIA from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().

 
Page updated 2025-09-21
Handle: RePEc:dbk:rlatia:v:2:y:2024:i::p:100:id:1062486latia2024100