Approximate Power Functions for Some Robust Tests of Regression Coefficients
Thomas J Rothenberg
Econometrica, 1988, vol. 56, issue 5, 997-1019
Abstract:
Edgeworth approximations are developed for the distribution functio ns of some statistics for testing a linear hypothesis on the coefficient s in a regression model with an unknown error covariance matrix. Adjust ments to the asymptotic critical values are found to insure that the tests have correct size to second order of approximation. The power loss due to the estimation of the error covariance matrix is calculated. Some examples involving heteroskedasticity and autocorrelation suggest that the null rejection probabilities of common robust regression tests are often considerably greater than their nominal level. Moreover, the cost of not knowing the error covariance matrix can be substantial. Copyright 1988 by The Econometric Society.
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://links.jstor.org/sici?sici=0012-9682%2819880 ... O%3B2-Y&origin=repec full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:56:y:1988:i:5:p:997-1019
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().