Semiparametric Estimation of Index Coefficients
James Powell,
James Stock and
Thomas M Stoker
Econometrica, 1989, vol. 57, issue 6, 1403-30
Abstract:
This paper gives a solution to the problem of estimating coefficients of index models, through the estimation of the density-weighted average derivative of a general regression function. A normalized version of the density-weighted average derivative can be estimated by certain linear instrumental variables coefficients. The estimators, based on sample analogies of the product moment representation of the average derivative, are constructed using nonparametric kernel estimators of the density of the regressors. Consistent estimators of the asymptotic variance-covariance matrices of the estimators are given, and a limited Monte Carlo simulation is used to study the practical performance of the procedures. Copyright 1989 by The Econometric Society.
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (393)
Downloads: (external link)
http://links.jstor.org/sici?sici=0012-9682%2819891 ... O%3B2-R&origin=repec full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:57:y:1989:i:6:p:1403-30
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().