EconPapers    
Economics at your fingertips  
 

High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility

Shinichi Sakata and Halbert White

Econometrica, 1998, vol. 66, issue 3, 529-568

Abstract: The authors show that quasimaximum likelihood (QML) estimators for conditional dispersion models can be severely affected by a small number of outliers such as market crashes and rallies, and they propose new estimation strategies (the two-stage Hampel estimators and two-stage S-estimators) resistant to the effects of outliers and study the properties of these estimators. They apply their methods to estimate models of the conditional volatility of the daily returns of the S&P 500 Cash Index series. In contrast to QML estimators, the authors' proposed method resists outliers, revealing an informative new picture of volatility dynamics during 'typical' daily market activity.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (106)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:66:y:1998:i:3:p:529-568

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-24
Handle: RePEc:ecm:emetrp:v:66:y:1998:i:3:p:529-568