EconPapers    
Economics at your fingertips  
 

Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach

Yacine Ait-Sahalia

Econometrica, 2002, vol. 70, issue 1, 223-262

Abstract: When a continuous-time diffusion is observed only at discrete dates, in most cases the transition distribution and hence the likelihood function of the observations is not explicitly computable. Using Hermite polynomials, I construct an explicit sequence of closed-form functions and show that it converges to the true (but unknown) likelihood function. I document that the approximation is very accurate and prove that maximizing the sequence results in an estimator that converges to the true maximum likelihood estimator and shares its asymptotic properties. Monte Carlo evidence reveals that this method outperforms other approximation schemes in situations relevant for financial models. Copyright The Econometric Society 2002.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (144)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:70:y:2002:i:1:p:223-262

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:ecm:emetrp:v:70:y:2002:i:1:p:223-262