Inference in Arch and Garch Models with Heavy--Tailed Errors
Peter Hall () and
Qiwei Yao ()
Additional contact information
Peter Hall: University of Chicago, IL, U.S.A
Qiwei Yao: Yale University, New Haven, U.S.A.; University of Auckland, New Zealand; University of York, UK
Authors registered in the RePEc Author Service: Peter C. B. Phillips
Econometrica, 2003, vol. 71, issue 1, 285-317
Abstract:
ARCH and GARCH models directly address the dependency of conditional second moments, and have proved particularly valuable in modelling processes where a relatively large degree of fluctuation is present. These include financial time series, which can be particularly heavy tailed. However, little is known about properties of ARCH or GARCH models in the heavy--tailed setting, and no methods are available for approximating the distributions of parameter estimators there. In this paper we show that, for heavy--tailed errors, the asymptotic distributions of quasi--maximum likelihood parameter estimators in ARCH and GARCH models are nonnormal, and are particularly difficult to estimate directly using standard parametric methods. Standard bootstrap methods also fail to produce consistent estimators. To overcome these problems we develop percentile--"t", subsample bootstrap approximations to estimator distributions. Studentizing is employed to approximate scale, and the subsample bootstrap is used to estimate shape. The good performance of this approach is demonstrated both theoretically and numerically. Copyright The Econometric Society 2003.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (153)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:71:y:2003:i:1:p:285-317
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().