EconPapers    
Economics at your fingertips  
 

Empirical Limits for Time Series Econometric Models

Werner Ploberger and Peter Phillips

Econometrica, 2003, vol. 71, issue 2, 627-673

Abstract: This paper characterizes empirically achievable limits for time series econometric modeling and forecasting. The approach involves the concept of minimal information loss in time series regression and the paper shows how to derive bounds that delimit the proximity of empirical measures to the true probability measure (the DGP) in models that are of econometric interest. The approach utilizes joint probability measures over the combined space of parameters and observables and the results apply for models with stationary, integrated, and cointegrated data. A theorem due to Rissanen is extended so that it applies directly to probabilities about the relative likelihood (rather than averages), a new way of proving results of the Rissanen type is demonstrated, and the Rissanen theory is extended to nonstationary time series with unit roots, near unit roots, and cointegration of unknown order. The corresponding bound for the minimal information loss in empirical work is shown not to be a constant, in general, but to be proportional to the logarithm of the determinant of the (possibility stochastic) Fisher--information matrix. In fact, the bound that determines proximity to the DGP is generally path dependent, and it depends specifically on the type as well as the number of regressors. For practical purposes, the proximity bound has the asymptotic form ("K"/2)log "n", where "K" is a new dimensionality factor that depends on the nature of the data as well as the number of parameters in the model. When 'good' model selection principles are employed in modeling time series data, we are able to show that our proximity bound quantifies empirical limits even in situations where the models may be incorrectly specified.One of the main implications of the new result is that time trends are more costly than stochastic trends, which are more costly in turn than stationary regressors in achieving proximity to the true density. Thus, in a very real sense and quantifiable manner, the DGP is more elusive when there is nonstationarity in the data. The implications for prediction are explored and a second proximity theorem is given, which provides a bound that measures how close feasible predictors can come to the optimal predictor. Again, the bound has the asymptotic form ("K"/2)log "n", showing that forecasting trends is fundamentally more difficult than forecasting stationary time series, even when the correct form of the model for the trends is known. Copyright The Econometric Society 2003.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (25)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Working Paper: Empirical Limits for Time Series Econometric Models (1999) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:71:y:2003:i:2:p:627-673

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:ecm:emetrp:v:71:y:2003:i:2:p:627-673