EconPapers    
Economics at your fingertips  
 

Bootstrap Methods for Markov Processes

Joel L. Horowitz

Econometrica, 2003, vol. 71, issue 4, 1049-1082

Abstract: The block bootstrap is the best known bootstrap method for time-series data when the analyst does not have a parametric model that reduces the data generation process to simple random sampling. However, the errors made by the block bootstrap converge to zero only slightly faster than those made by first-order asymptotic approximations. This paper describes a bootstrap procedure for data that are generated by a Markov process or a process that can be approximated by a Markov process with sufficient accuracy. The procedure is based on estimating the Markov transition density nonparametrically. Bootstrap samples are obtained by sampling the process implied by the estimated transition density. Conditions are given under which the errors made by the Markov bootstrap converge to zero more rapidly than those made by the block bootstrap. Copyright The Econometric Society 2003.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (64)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:71:y:2003:i:4:p:1049-1082

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:ecm:emetrp:v:71:y:2003:i:4:p:1049-1082