EconPapers    
Economics at your fingertips  
 

Random Effects Estimators with many Instrumental Variables

Gary Chamberlain and Guido Imbens

Econometrica, 2004, vol. 72, issue 1, 295-306

Abstract: In this paper we propose a new estimator for a model with one endogenous regressor and many instrumental variables. Our motivation comes from the recent literature on the poor properties of standard instrumental variables estimators when the instrumental variables are weakly correlated with the endogenous regressor. Our proposed estimator puts a random coefficients structure on the relation between the endogenous regressor and the instruments. The variance of the random coefficients is modelled as an unknown parameter. In addition to proposing a new estimator, our analysis yields new insights into the properties of the standard two-stage least squares (TSLS) and limited-information maximum likelihood (LIML) estimators in the case with many weak instruments. We show that in some interesting cases, TSLS and LIML can be approximated by maximizing the random effects likelihood subject to particular constraints. We show that statistics based on comparisons of the unconstrained estimates of these parameters to the implicit TSLS and LIML restrictions can be used to identify settings when standard large sample approximations to the distributions of TSLS and LIML are likely to perform poorly. We also show that with many weak instruments, LIML confidence intervals are likely to have under-coverage, even though its finite sample distribution is approximately centered at the true value of the parameter. In an application with real data and simulations around this data set, the proposed estimator performs markedly better than TSLS and LIML, both in terms of coverage rate and in terms of risk. Copyright Econometric Society 2004.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (42)

Downloads: (external link)
http://hdl.handle.net/10.1111/j.1468-0262.2004.00485.x link to full text (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:72:y:2004:i:1:p:295-306

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:ecm:emetrp:v:72:y:2004:i:1:p:295-306