GMM, GEL, Serial Correlation, and Asymptotic Bias
Stanislav Anatolyev
Econometrica, 2005, vol. 73, issue 3, 983-1002
Abstract:
For stationary time series models with serial correlation, we consider generalized method of moments (GMM) estimators that use heteroskedasticity and autocorrelation consistent (HAC) positive definite weight matrices and generalized empirical likelihood (GEL) estimators based on smoothed moment conditions. Following the analysis of Newey and Smith (2004) for independent observations, we derive second order asymptotic biases of these estimators. The inspection of bias expressions reveals that the use of smoothed GEL, in contrast to GMM, removes the bias component associated with the correlation between the moment function and its derivative, while the bias component associated with third moments depends on the employed kernel function. We also analyze the case of no serial correlation, and find that the seemingly unnecessary smoothing and HAC estimation can reduce the bias for some of the estimators. Copyright The Econometric Society 2005.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (50)
Downloads: (external link)
http://hdl.handle.net/10.1111/j.1468-0262.2005.00601.x link to full text (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:emetrp:v:73:y:2005:i:3:p:983-1002
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().