Numerical integration-based Gaussian mixture filters for maximum likelihood estimation of asymmetric stochastic volatility models
Hiroyuki Kawakatsu
Econometrics Journal, 2007, vol. 10, issue 2, 342-358
Abstract:
I consider Gaussian filters based on numerical integration for maximum likelihood estimation of stochastic volatility models with leverage. I show that for this class of models, the prediction step of the Gaussian filter can be evaluated analytically without linearizing the state--space model. Monte Carlo simulations show that the mixture Gaussian filter performs remarkably well in terms of both accuracy and computation time compared to the quasi-maximum likelihood and importance sampler filters. The result that the prediction step of the Gaussian filter can be evaluated analytically is shown to apply more generally to a number of commonly used specifications of the stochastic volatility model. Copyright Royal Economic Society 2007
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (7)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:10:y:2007:i:2:p:342-358
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().