Modelling volatility asymmetries: a Bayesian analysis of a class of tree structured multivariate GARCH models
Petros Dellaportas and
Ioannis Vrontos ()
Econometrics Journal, 2007, vol. 10, issue 3, 503-520
Abstract:
A new class of multivariate threshold GARCH models is proposed for the analysis and modelling of volatility asymmetries in financial time series. The approach is based on the idea of a binary tree where every terminal node parametrizes a (local) multivariate GARCH model for a specific partition of the data. A Bayesian stochastic method is developed and presented for the analysis of the proposed model consisting of parameter estimation, model selection and volatility prediction. A computationally feasible algorithm that explores the posterior distribution of the tree structure is designed using Markov chain Monte Carlo stochastic search methods. Simulation experiments are conducted to assess the performance of the proposed method, and an empirical application of the proposed model is illustrated using real financial time series. Copyright Royal Economic Society 2007
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (13)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:10:y:2007:i:3:p:503-520
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().