Spurious periodic autoregressions
Tommaso Proietti
Econometrics Journal, 1998, vol. 1, issue ConferenceIssue, C1-C22
Abstract:
The class of periodic autoregressive (PAR) models, suitably extended so as to allow for 'periodic integration', has recently found widespread application to economic time series as an alternative to the time-invariant models available in the literature. An elaborate modelling strategy has been proposed, and new tests for periodic integration have been envisaged, whose empirical performance tends to support the notion that the kind of non-stationary stochastic dynamics observed in time series arises as a consequence of periodic integration. This paper aims at challenging this view by means of a Monte Carlo experiment: we generate data according to a trend with a seasonality model such that the trend is a random walk with drift and the seasonal component is generated according to a stochastic trigonometric model. It is found that all the fundamental tools of PAR modelling will tend to provide spurious evidence in favour of a periodic model, and conclude that, as long as macroeconomic time series are concerned, PAR models are an overelaborate way of capturing essential features, such as indeterministic trends and seasonals, that are more parsimoniously accommodated by a time-invariant model.
Keywords: Periodic models; Seasonality; Trend. (search for similar items in EconPapers)
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (3)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:1:y:1998:i:conferenceissue:p:c1-c22
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().