Estimating stochastic volatility models through indirect inference
Chiara Monfardini
Econometrics Journal, 1998, vol. 1, issue ConferenceIssue, C113-C128
Abstract:
We propose as a tool for the estimation of stochastic volatility models two indirect inference estimators based on the choice of an autoregressive auxiliary model and an ARMA auxiliary model, respectively. These choices make the auxiliary parameter easy to estimate and at the same time allow the derivation of optimal indirect inference estimators. The results of some Monte Carlo experiments provide evidence that the indirect inference estimators perform well in finite sample, although less efficiently than Bayes and Simulated EM algorithms.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (29)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:1:y:1998:i:conferenceissue:p:c113-c128
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().