Degrees of freedom adjustment for disturbance variance estimators in dynamic regression models
Jan Kiviet and
Garry Phillips
Econometrics Journal, 1998, vol. 1, issue RegularPapers, 44-70
Abstract:
In the classical regression model with fixed regressors the statistic S 2 , i.e. the sum of squared residuals (SSR) divided by the number of degrees of freedom, is an unbiased estimator of the variance of the disturbances. If the model is dynamic and contains lagged-dependent explanatory variables, then the least-squares coefficient estimators are biased in finite samples, and so is S 2 . By deriving the expectation of the initial terms in an expansion of the expression for SSR in the case of an autoregressive regression model, we prove that the bias in the degrees of freedom adjusted estimator is of smaller order in T , the sample size, than the bias of the unadjusted maximum-likelihood estimator. We also indicate how a further decrease in the bias can be achieved, and what the consequences are for estimating s. Insight is provided into the relative numerical magnitude of the bias for various estimators of s 2 in some relevant particular cases of this class of model by Monte Carlo simulation.
Keywords: ARX-model; Asymptotic expansions; Lagged dependent variables bias; Large sample asymptotics. (search for similar items in EconPapers)
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (7)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:1:y:1998:i:regularpapers:p:44-70
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().