Maximum likelihood estimates for the Hildreth-Houck random coefficients model
Asad Zaman
Econometrics Journal, 2002, vol. 5, issue 1, 237-262
Abstract:
We explore maximum likelihood (ML) estimation of the Hildreth-Houck random coefficients model. We show that the global ML estimator can be inconsistent. We develop an alternative LML (local ML) estimator and prove that it is consistent and asymptotically efficient for points in the interior of the parameters. Properties of the LML and comparisons with common method of moments (MM) estimates are done via Monte Carlo. Boundary parameters lead to nonstandard asymptotic distributions for the LML which are described. The LML is used to develop a modification of the LR test for random coefficients. Simulations suggest that the LR test is more powerful for distant alternatives than the Breusch-Pagan (BP) Lagrange multiplier test. A simple modification of the BP test also appears to be more powerful than the BP. Copyright Royal Economic Society 2002
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:5:y:2002:i:1:p:237-262
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().