Economics at your fingertips  

Modelling sample selection using Archimedean copulas

Murray D. Smith

Econometrics Journal, 2003, vol. 6, issue 1, 99-123

Abstract: By a theorem due to Sklar, a multivariate distribution can be represented in terms of its underlying margins by binding them together using a copula function. By exploiting this representation, the "copula approach" to modelling proceeds by specifying distributions for each margin and a copula function. In this paper, a number of families of copula functions are given, with attention focusing on those that fall within the Archimedean class. Members of this class of copulas are shown to be rich in various distributional attributes that are desired when modelling. The paper then proceeds by applying the copula approach to construct models for data that may suffer from selectivity bias. The models examined are the self-selection model, the switching regime model and the double-selection model. It is shown that when models are constructed using copulas from the Archimedean class, the resulting expressions for the log-likelihood and score facilitate maximum likelihood estimation. The literature on selectivity modelling is almost exclusively based on multivariate normal specifications. The copula approach permits selection modelling based on multivariate non-normality. Examples of self-selection models for labour supply and for duration of hospitalization illustrate the application of the copula approach to modelling. Copyright Royal Economic Society, 2003

Date: 2003
References: Add references at CitEc
Citations View citations in EconPapers (55) Track citations by RSS feed

Downloads: (external link) link to full text (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms

More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing ().

Page updated 2018-11-07
Handle: RePEc:ect:emjrnl:v:6:y:2003:i:1:p:99-123