EconPapers    
Economics at your fingertips  
 

Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter

Renate Meyer, David A. Fournier and Andreas Berg

Econometrics Journal, 2003, vol. 6, issue 2, 408-420

Abstract: Stochastic volatility (SV) models provide more realistic and flexible alternatives to ARCH-type models for describing time-varying volatility exhibited in many financial time series. They belong to the wide class of nonlinear state-space models. As classical parameter estimation for SV models is difficult due to the intractable form of the likelihood, Bayesian approaches using Markov chain Monte Carlo (MCMC) techniques for posterior computations have been suggested. In this paper, an efficient MCMC algorithm for posterior computation in SV models is presented. It is related to the integration sampler of Kim et al.(1998) but does not need an offset mixture of normals approximation to the likelihood. Instead, the extended Kalman Filter is combined with the Laplace approximation to compute the likelihood function by integrating out all unknown system states. We make use of automatic differentiation in computing the posterior mode and in designing an efficient Metropolis--Hastings algorithm. We compare the new algorithm to the single-update Gibbs sampler and the integration sampler using a well-known time series of pound/dollar exchange rates. Copyright Royal Economic Society, 2003

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (10)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:6:y:2003:i:2:p:408-420

Ordering information: This journal article can be ordered from
http://www.ectj.org

Access Statistics for this article

Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms

More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:ect:emjrnl:v:6:y:2003:i:2:p:408-420