Asymptotic inference results for multivariate long-memory processes
Juan Dolado and
Francesc Marmol
Econometrics Journal, 2004, vol. 7, issue 1, 168-190
Abstract:
In this paper, we extend the well-known Sims, Stock and Watson (SSW) (Sims et al. 1990; Econometrica 56, 113-44), analysis on estimation and testing in vector autoregressive process (VARs) with integer unit roots and deterministic components to a more general set-up where non-stationary fractionally integrated (NFI) processes are considered. In particular, we focus on partial VAR models where the conditioning variables are NFI since this is the only finite-lag VAR model compatible with such processes. We show how SSW's conclusions remain valid. This means that whenever a block of coefficients in the partial VAR can be written as coefficients on zero-mean I(0) regressors in models including a constant term, they will have a joint asymptotic normal distribution. Monte Carlo simulations and an empirical application of our theoretical results are also provided. Copyright Royal Economic Socciety 2004
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (16)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:7:y:2004:i:1:p:168-190
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().