Non-linear GARCH models for highly persistent volatility
Markku Lanne and
Pentti Saikkonen
Econometrics Journal, 2005, vol. 8, issue 2, 251-276
Abstract:
In this paper we study a new class of nonlinear GARCH models. Special interest is devoted to models that are similar to previously introduced smooth transition GARCH models except for the novel feature that a lagged value of conditional variance is used as the transition variable. This choice of the transition variable is mainly motivated by the desire to find useful models for highly persistent volatility. The underlying idea is that high persistence in conditional variance is related to relatively infrequent changes in regime, which can be captured by a suitable specification of the new model. Using the theory of Markov chains, we provide sufficient conditions for the stationarity and existence of moments of various smooth transition GARCH models and even more general nonlinear GARCH models. An empirical application to an exchange rate return series demonstrates the differences between the new model and conventional GARCH models. Copyright 2005 Royal Economic Society
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (27)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: Nonlinear GARCH models for highly persistent volatility (2002) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:8:y:2005:i:2:p:251-276
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().