A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend
Ai Deng () and
Pierre Perron
Econometrics Journal, 2006, vol. 9, issue 3, 423-447
Abstract:
This paper considers various asymptotic approximations to the finite sample distribution of the estimate of the break date in a simple one-break model for a linear trend function that exhibits a change in slope, with or without a concurrent change in intercept. The noise component is either stationary or has an autoregressive unit root. Our main focus is on comparing the so-called "bounded-trend" and "unbounded-trend" asymptotic frameworks. Not surprisingly, the "bounded-trend" asymptotic framework is of little use when the noise component is integrated. When the noise component is stationary, we obtain the following results. If the intercept does not change and is not allowed to change in the estimation, both frameworks yield the same approximation. However, when the intercept is allowed to change, whether or not it actually changes in the data, the "bounded-trend" asymptotic framework completely misses important features of the finite sample distribution of the estimate of the break date, especially the pronounced bimodality that was uncovered by Perron and Zhu (2005) and shown to be well captured using the "unbounded-trend" asymptotic framework. Simulation experiments confirm our theoretical findings, which expose the drawbacks of using the " bounded-trend" asymptotic framework in the context of structural change models. Copyright Royal Economic Society 2006
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (17)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: A Comparison of Alternative Asymptotic Frameworks to Analyze a Structural Change in a Linear Time Trend (2005)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:9:y:2006:i:3:p:423-447
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().