A horse race of models and estimation methods for predicting bankruptcy
Nawaf Almaskati,
Ron Bird,
Danny Yeung () and
Yue Lu
Advances in accounting, 2021, vol. 52, issue C
Abstract:
We use a comprehensive set of performance metrics to analyze the improvement in the classification power and prediction accuracy of various bankruptcy prediction models after adding governance variables and/or varying the estimation method used. In a sample covering bankruptcies of U.S. public firms in the period 2000 to 2015, we find that the addition of governance variables significantly improves the performance of all bankruptcy prediction models. We also find that the additional explanatory power provided by governance measures improves the further the firm is from bankruptcy, which suggests that governance variables may provide earlier and more accurate warning of the firm's bankruptcy potential. Our findings show that the performance of any bankruptcy prediction model is significantly affected by the estimation method used. We find that regardless of the bankruptcy model, hazard analysis provides the best classification and out-of-sample forecast accuracy among the parametric methods. Furthermore, non-parametric methods such as neural networks, data envelopment analysis or classification and regression trees appear to provide comparable and sometimes superior classification accuracy to hazard analysis. Lastly, we use the dynamic panel generalized methods of moments model to address concerns raised in prior studies about the susceptibility of similar studies to endogeneity issues and find that our findings continue to hold.
Keywords: Default prediction; Bankruptcy; Non-parametric methods; Parametric methods; Corporate governance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0882611021000018
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:advacc:v:52:y:2021:i:c:s0882611021000018
DOI: 10.1016/j.adiac.2021.100513
Access Statistics for this article
Advances in accounting is currently edited by Dennis Caplan
More articles in Advances in accounting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().