GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises. Part II - Interactive simulation of various management strategies with diverse stakeholders
Jonathan Vayssières,
François Bocquier and
Philippe Lecomte
Agricultural Systems, 2009, vol. 101, issue 3, 139-151
Abstract:
GAMEDE is a stock-flow dynamic simulation model designed with farmers to represent dairy farm functioning and the consequences of the farmer's daily management decisions for whole-farm sustainability. Sustainability is evaluated according to its three pillars: technico-economic viability, respect for environment, and social liveability. The model provides original information for a better understanding of the processes regulating nitrogen dynamics within the farm, and the factors determining farmers' decisions and practices. Model implementation experiments have revealed that GAMEDE is also a useful tool to support discussions and to generate knowledge exchange among various stakeholders who play an important role in the development of farm sustainability: farmers, extension agents and researchers. While a majority of researchers and advisers are specialised and a majority of farmers fix their attention on specific and narrow themes of farm management, such a comprehensive model can help stakeholders complement their knowledge to gain a holistic view of the farming system. This holistic and integrated view is crucial: (i) for researchers who wish to explain diversity in farming systems and understand decisional and biophysical processes and their interrelated effects operating in such complex agro-ecosystems, (ii) for advisers whose aim is to define alternative management strategies applicable in practice, i.e. taking into account farm specificities, and (iii) for farmers who must choose practices compatible with their resources, assets, constraints and objectives. Holism can also improve versatility and thus the generic character of models. Issues are narrowly specified and greatly vary both among categories of stakeholders (e.g. scientists versus farmers) and within each category (e.g. among farmers). A comprehensive model that: (i) details all farm management operations, and (ii) represents their effects on different spatio-temporal levels and on the three sustainability dimensions, is more likely to respond to the various issues facing different stakeholders. We argue that capacity of models to respond to stakeholders' questions has to be considered in future evaluations of decision support systems.
Keywords: Visual; interactive; simulations; Whole-farm; management; Actual; and; prospective; strategies; Holism; Crop-livestock; farming (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308-521X(09)00064-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:101:y:2009:i:3:p:139-151
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().