Dairy farm nutrient management model: 2. Evaluation of different strategies to mitigate phosphorus surplus
Pekka Huhtanen,
Juha Nousiainen and
Eila Turtola
Agricultural Systems, 2011, vol. 104, issue 5, 383-391
Abstract:
To reduce (P) surpluses on dairy farms and thereby the risk of P losses to natural waters we studied different management alternatives by a nutrient balance model described in the companion paper. The strategies evaluated mitigating the P surpluses were: mineral P fertilisation, dietary mineral P supplementation, replacement rate, animal density, production level, feeding intensity, dietary P concentration and nutrient efficiency in crop production. Responses to several interventions (e.g. mineral P fertilisation, purchased feed P, replacement rate) were similar to those observed in Finnish field studies. Reducing or completely giving up the use of purchased mineral P fertilisers was the most efficient measure to reduce P surplus. The slope between the amount of mineral fertilisers and P surplus was 0.98-0.99 (in the field data 1.0). Increased animal density resulted in a greater P surplus, but the slope between P input from purchased feed and surplus was considerably smaller (0.65) than that of P fertilisation. Increasing milk yield with improved genetic potential of the cows would have minimal effects on P surplus per unit of product, but it would increase P surplus per hectare. When the intensity of energy and protein feeding was increased, P surplus rose markedly both per unit of product and hectare. This is (1) due to increased dietary P concentration and (2) due to smaller marginal production responses than those calculated from feeding standards. Reducing dietary P concentration by constraining P excess per kg milk in least-cost ration formulation improved P efficiency in milk production and dairy farming system. However, feed cost increased as low P energy (sugar-beet pulp) and protein (soybean meal) supplements are more expensive than cereal grains or rapeseed feeds. Improving the nutrient use efficiency in crop production had a strong influence in the whole-farm efficiency and P surplus. The modelling results showed that Finnish dairy farms have a great potential to improve P efficiency and reduce P losses to the environment, even by increasing production intensity (milk/ha). It is concluded that the most cost-effective scenario to mitigate P surpluses at a dairy farm would be to reduce or give up the use of mineral P as fertilisers and supplements, and to improve the use of present soil P reserves.
Keywords: Dairy; farm; Phosphorus; Modelling; Nutrient; surplus (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308-521X(11)00012-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:104:y:2011:i:5:p:383-391
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().