A bio-economic evaluation of the profitability of adopting subtropical grasses and pasture-cropping on crop–livestock farms
J.D. Finlayson,
R.A. Lawes,
T. Metcalf,
M.J. Robertson,
D. Ferris and
M.A. Ewing
Agricultural Systems, 2012, vol. 106, issue 1, 102-112
Abstract:
Pasture-cropping is a novel approach to increasing the area of perennial forages in mixed livestock and cropping systems. It involves planting annual cereals directly into a living perennial pasture. There is interest in using subtropical grasses for pasture-cropping as they are winter dormant and their growth profile is complementary with winter crops. The ability of subtropical grasses to maintain feed quality in summer is likely to be an important attribute. However, a wide range of factors can affect the uptake of such systems. This paper evaluates the farm-system economics of subtropical grasses and pasture-cropping. The research question is: what factors affect the profitability of a new technology such as (1) subtropical grass and (2) subtropical grass that is pasture-cropped. The analysis uses the MIDAS model of a central wheatbelt farm in Western Australia. The results suggest the profitability and adoption of subtropical grasses is likely to be strongly influenced by the mix of soil types present on the farm; the feed quality of the subtropical grass; whether the production emphasis of the farm is for grazing or cropping, and the level of production in summer and early autumn. The same factors are relevant to pasture-cropping, with the addition of yield penalties due to competition between the arable crop and the host perennial. The results were less sensitive to changes in the winter production of subtropical grass. Pasture-cropping was more profitable and likely to involve a larger area of the farm when a meat rather than a wool-dominant sheep system was present. However, there was little difference between the meat and wool flocks in their sensitivity to other factors in this analysis.
Keywords: Intercropping; Pasture-cropping; Technology evaluation; MIDAS; Model of dryland agricultural system; Whole farm modelling (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X11001624
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:106:y:2012:i:1:p:102-112
DOI: 10.1016/j.agsy.2011.10.012
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().