Coupling the Tradeoff Analysis Model with a market equilibrium model to analyze economic and environmental outcomes of agricultural production systems
Roberto O. Valdivia,
John Antle () and
Jetse J. Stoorvogel
Agricultural Systems, 2012, vol. 110, issue C, 17-29
Abstract:
Analysis of the economic and environmental outcomes of agricultural systems requires a bottom-up linkage from the farm to market, as well as a top-down linkage from market to farm. This study develops this two-way linkage between the Tradeoff Analysis Model of agricultural systems and a partial equilibrium market model. The resulting model can determine the effects of technology and policy interventions on the spatial distribution of environmental and economic outcomes at market equilibrium quantities and prices. The approach is demonstrated with a case study of tradeoffs between poverty and nutrient depletion in a semi-subsistence agricultural system (Machakos, Kenya). The results suggest that the linkage of market equilibrium analysis to farm level Integrated Assessment Models can be important in the analysis of agriculture–environment interactions.
Keywords: Tradeoff Analysis Model; Market equilibrium; Nutrient depletion; Poverty; Kenya (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X12000364
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:110:y:2012:i:c:p:17-29
DOI: 10.1016/j.agsy.2012.03.003
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().