Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises?
Douglas J. Alcock,
Matthew T. Harrison,
Richard P. Rawnsley and
Richard J. Eckard
Agricultural Systems, 2015, vol. 132, issue C, 25-34
Abstract:
Farm intervention strategies that reduce greenhouse gas (GHG) emissions from the livestock industries may reduce global emissions associated with agriculture, though farmers are unlikely to adopt new practises unless they also improve farm profitability. Here our objective was to explore the effect of manipulating enterprise management or animal genotype on whole-farm production, profitability, enteric methane emissions and wool emissions intensities of sheep enterprises in southern Australia. Two enterprises that differed in lamb sale age were simulated using the model GrassGro; surplus animals were sold at either 18 weeks (weaner) or 12 months old (yearling). We examined the influence of lambing time (LT), joining maiden ewes at 7 months instead of 19 months of age (JA), increasing lamb weaning rates (WR), or superior genotypes with 10% improvement in fleece weight (FW), feed efficiency (FE) and/or methane yield (MY).
Keywords: Abatement; Biophysical modelling; Feed use efficiency; Micron; Mitigation; Wool (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X14000791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:132:y:2015:i:c:p:25-34
DOI: 10.1016/j.agsy.2014.06.007
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().