Reducing greenhouse gas emissions from a wheat–maize rotation system while still maintaining productivity
Jianzheng Li,
Enli Wang,
Yingchun Wang,
Hongtao Xing,
Daolong Wang,
Ligang Wang and
Chunyu Gao
Agricultural Systems, 2016, vol. 145, issue C, 90-98
Abstract:
High-input agriculture in China has successfully increased crop productivity in the past decades, but at a significant environmental cost. It is essential to improve management strategies to mitigate greenhouse gas (GHG) emissions and other environmental costs, while maintaining grain yields. However, there is a lack of studies to evaluate mitigation strategies under long-term climate variability. This paper combines field experimental data and soil–plant systems modeling to investigate the potential for improving water and nitrogen management of a wheat–maize double cropping system in North China Plain. The APSIM model was calibrated against the data and then applied to simulate crop yield and N2O emissions from soil in response to irrigation and nitrogen inputs. Our results show that the N fertilizer rate and irrigation amount under the local farmer practice could be reduced by 28% and 14% without sacrificing crop yield. This in turn led to a reduction in GHG emissions by 31%, mainly attributed to the decrease in emissions from the production and transportation of N fertilizer and direct N2O emissions from soil. Additionally, the results indicate that the direct N2O emissions from soil was positively correlated with N inputs, implying an increasing emission factor (N2O produced per unit of N input) with N application rates. It is concluded that potential exists to optimize N fertilizer rate and irrigation amount to reduce GHG emissions while still maintaining crop yield in the agro-ecosystems in North China Plain.
Keywords: Grain yield; Greenhouse gas emissions; Nitrogen; Irrigation; APSIM (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X16300476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:145:y:2016:i:c:p:90-98
DOI: 10.1016/j.agsy.2016.03.007
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().