An irrigated cotton farm emissions case study in NSW, Australia
J.W. Powell,
J.M. Welsh and
R.J. Eckard
Agricultural Systems, 2017, vol. 158, issue C, 61-67
Abstract:
The primary source of emissions in broadacre cropping is synthetic fertiliser applied to farmland, creating nitrous oxide from chemical processes in the soil. In high yielding irrigated cotton production, nitrogen remains a key input to maintain yields and maximise crop returns. This study aims to identify immediate strategies available to broadacre irrigation to reduce emissions and maintain profitability. Four emission mitigation strategies on a large broadacre irrigation farm in Northern New South Wales producing cereals, pulse and cotton crops were modelled. The results show rotating cotton with pulse crops, instead of wheat, can achieve an 8% reduction in emissions and increase whole farm gross margin by 12%, due primarily to the current historically high chickpea price and a reduction in applied nitrogen. Combining enhanced efficiency fertilisers in cotton crops in a more comprehensive abatement strategy has shown an indicative 13% emissions reduction from the baseline scenario, with a 6% reduction in farm gross margin from the increased fertiliser cost. However, uncertainty regarding the impact of EEFs on cotton yield in vertosol soils is noted. The soil sequestration from including a tree-lot in the emissions reduction strategy reduced whole farm emissions by 11% and reduced whole farm gross margin of 3%; however, difficulty in establishment and high establishment costs can add economic risk. Combining all three emissions reduction strategies results in a significant emissions reduction of 33% and a 4% gain in whole farm gross margin. Sensitivity analysis highlights gross margins results to be particularly sensitive to chickpea price movement. With this desktop modelling in mind, the discussion draws on industry research revealing that at a field scale, carefully balanced agronomic nuances exist between cotton cropping rotations and secure economic outcomes. The addition of achieving environmental objectives simultaneously with these variables is yet another future challenge facing government emissions abatement incentive programs and broadacre cropping businesses.
Keywords: Greenhouse gas; FarmGas; Pulse; Tree-lot; Enhanced efficiency fertiliser (EEF); Gross margin (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X17303311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:158:y:2017:i:c:p:61-67
DOI: 10.1016/j.agsy.2017.09.005
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().