Reducing vulnerability of rainfed agriculture through seasonal climate predictions: A case study on the rainfed rice production in Southeast Asia
Keiichi Hayashi,
Lizzida Llorca,
Sri Rustini,
Prihasto Setyanto and
Zulkifli Zaini
Agricultural Systems, 2018, vol. 162, issue C, 66-76
Abstract:
Rainfed rice production needs to contribute more to the current and future world food security due to the increasing competition for limited water supplies including irrigation water. However, it is vulnerable to climate variabilities and extremes hence the utilization of climate predictions is crucial. In this study, the predictive accuracy and applicability of a seasonal climate predictions (SINTEX-F) were evaluated for rainfed rice areas where climate uncertainties are main constraints for a stable and high production. Outputs from SINTEX-F such as daily rainfall, maximum and minimum air temperatures, and wind speed were tested for Indonesia and Lao PDR through the cumulative distribution function-based downscaling method (CDFDM), which is a simple, flexible and inexpensive bias reduction method through removing bias from the empirical cumulative distribution functions of the GCM outputs. The CDFDM outputs were compared with historical weather data. Obtained results showed that discrepancies between SINTEX-F and the historical weather data were significantly reduced through CDFDM for both sites. ORYZA, an ecophysiological rice growth model that simulate agroecological rice growth processes, was used to evaluate the applicability of the SINTEX-F for grain yield predictions. Obtained results from on-farm field validation showed that the predicted grain yield was close to the actual grain yield that was obtained through optimum sowing timing given by the predictions. A normalized root mean square error between predicted and actual grain yield showed satisfactory model fit in predictions. This implies that SINTEX-F was applicable for improving rainfed rice production through CDFDM. However, CDFDM has a limitation in orographic precipitation, the high-resolution daily weather data or a sophisticated special interpolation method should be considered in order to improve the representation of the geographical pattern for the parameters derived from CDFDM.
Keywords: Climate change adaptation; Decision making; Drought stress; Dynamic cropping calendar; Food security (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X17309204
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:162:y:2018:i:c:p:66-76
DOI: 10.1016/j.agsy.2018.01.007
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().