Economics at your fingertips  

Transformative and systemic climate change adaptations in mixed crop-livestock farming systems

Afshin Ghahramani and David Bowran

Agricultural Systems, 2018, vol. 164, issue C, 236-251

Abstract: Mixed crop-livestock farming systems provide food for more than half of the world's population. These agricultural systems are predicted to be vulnerable to climate change and therefore require transformative adaptations. In collaboration with farmers in the wheatbelt of Western Australia (WA), a range of systemic and transformative adaptation options, e.g. land use change, were designed for the modelled climate change projected to occur in 2030 (0.4–1.4° increase in mean temperature). The effectiveness of the adaptation options was evaluated using coupled crop and livestock biophysical models within an economic and environmental framework at both the enterprise and farm scales. The relative changes in economic return and environmental variables in 2030 are presented in comparison with a baseline period (1970–2010). The analysis was performed on representative farm systems across a rainfall transect. Under the impact of projected climate change, the economic returns of the current farms without adaptation declined by between 2 and 47%, with a few exceptions where profit increased by up to 4%. When the adaptations were applied for 2030, profit increased at the high rainfall site in the range between 78 and 81% through a 25% increase in the size of livestock enterprise and adjustment in sowing dates, but such profit increases were associated with 6–10% increase in greenhouse gas (GHG) emissions. At the medium rainfall site, a 100% increase in stocking rate resulted in 5% growth in profit but with a 61–71% increase in GHG emissions and the increased likelihood of soil degradation. At the relatively low rainfall site, a 75% increase in livestock when associated with changes in crop management resulted in greater profitability and a smaller risk of soil erosion. This research identified that a shift toward a greater livestock enterprises (stocking rate and pasture area) could be a profitable and low-risk approach and may have most relevance in years with extremely low rainfall. If transformative adaptations are adopted then there will be an increased requirement for an emissions control policy due to livestock GHG emissions, while there would be also need for soil conservation strategies to be implemented during dry periods. The adoption rate analysis with producers suggests there would be a greater adoption rate for less intensified adaptations even if they are transformative. Overall the current systems would be more resilient with the adaptations, but there may be challenges in terms of environmental sustainability and in particular with soil conservation.

Keywords: Climate change; Adaptation; Mitigation; Integration; Modelling; GHG; Land use change (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen

More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-07-28
Handle: RePEc:eee:agisys:v:164:y:2018:i:c:p:236-251