EconPapers    
Economics at your fingertips  
 

Co-design and assessment of mitigation practices in rice production systems: A case study in northern Vietnam

Azeem Tariq, Andreas de Neergaard, Lars Stoumann Jensen, Bjoern Ole Sander, Mai Van Trinh, Quynh Duong Vu, Reiner Wassmann and Stephane de Tourdonnet

Agricultural Systems, 2018, vol. 167, issue C, 72-82

Abstract: Rice production systems are an important source of agricultural greenhouse gas (GHG) emissions. Mitigation techniques, such as alternate wetting and drying, have been developed but have often not taken into consideration the constraints imposed by the practices and preferences of farmers. Since GHG mitigation benefits are not obvious at smallholder farm level, it is essential to design site-specific mitigation technologies with the participation of local stakeholders. The purpose of the present study was to adapt a participatory approach to designing and assessing mitigation practices for the dissemination of climate-friendly rice production systems. To improve the hybridization of scientific and local knowledge, a participatory five-step approach to prototyping was applied: (i) diagnosis based on a literature review and survey of stakeholders, (ii) design of mitigation practices based on laboratory trial and local knowledge (that of farmers, agricultural advisors and regional stakeholders), (iii) testing in growth chambers, (iv) testing in farmers' fields and (v) dissemination and assessment. The study was conducted in An Luong village, Red River Delta, northern Vietnam. In the study area, rice residue burning is restricted and farmers have to incorporate residue into the soil. Current water management practices, i.e. conventional continuous flooding and adopted midseason drainage, are not enough to reduce GHG emissions from added residues. Two new water management practices (pre-planting plus midseason drainage and early plus midseason drainage) were designed in participation with local stakeholders, and subsequently tested in the laboratory and in the field with the participation of local farmers. Future mitigation practices were assessed based on the yield, GHG emissions reduction and feedbacks of local stakeholders. Early plus midseason drainage proved to be an effective and feasible mitigation option for rice production in the area. Here we show that participation of local stakeholders in co-designing process help to identify the feasible GHG mitigation options, further it facilitates smallholder rice farmers to implement mitigation practices in their fields.

Keywords: Climate smart; Greenhouse gas; Adaptation; Smallholders; Constraints; Implementation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X17311514
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:167:y:2018:i:c:p:72-82

DOI: 10.1016/j.agsy.2018.08.012

Access Statistics for this article

Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen

More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agisys:v:167:y:2018:i:c:p:72-82