EconPapers    
Economics at your fingertips  
 

Farmers' preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria

Oyakhilomen Oyinbo, Jordan Chamberlin (), Bernard Vanlauwe, Liesbet Vranken, Yaya Alpha Kamara, Peter Craufurd and Miet Maertens

Agricultural Systems, 2019, vol. 173, issue C, 12-26

Abstract: Agricultural extension to improve yields of staple food crops and close the yield gap in Sub-Saharan Africa often entails general recommendations on soil fertility management that are distributed to farmers in a large growing area. Site-specific extension recommendations that are better tailored to the needs of individual farmers and fields, and enabled by digital technologies, could potentially bring about yield and productivity improvements. In this paper, we analyze farmers' preferences for high-input maize production supported by site-specific nutrient management recommendations provided by an ICT-based extension tool that is being developed for extension services in the maize belt of Nigeria. We use a choice experiment to provide ex-ante insights on the adoption potentials of site-specific extension services from the perspective of farmers. We control for attribute non-attendance and account for class as well as scale heterogeneity in preferences using different models, and find robust results. We find that farmers have strong preferences to switch from general to ICT-enabled site-specific soil fertility management recommendations which lend credence to the inclusion of digital technologies in agricultural extension. We find heterogeneity in preferences that is correlated with farmers' resource endowments and access to services. A first group of farmers are strong potential adopters; they are better-off, less sensitive to risk, and are more willing to invest in a high-input maize production system. A second group of farmers are weak potential adopters; they have lower incomes and fewer productive assets, are more sensitive to yield variability, and prefer less capital and labor intensive production techniques. Our empirical findings imply that improving the design of extension tools to enable provision of information on the riskiness of expected outcomes and flexibility in switching between low-risk and high-risk recommendations will help farmers to make better informed decisions, and thereby improve the uptake of extension advice and the efficiency of extension programs.

Keywords: Agricultural technology adoption; Agricultural extension; ICT-based extension; Site-specific extension; Soil fertility management; Maize yield (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X18306772
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:173:y:2019:i:c:p:12-26

Access Statistics for this article

Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen

More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2020-01-25
Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:12-26