EconPapers    
Economics at your fingertips  
 

Soil water sensing for water balance, ET and WUE

Steven R. Evett, Robert C. Schwartz, Joaquin J. Casanova and Lee K. Heng

Agricultural Water Management, 2012, vol. 104, issue C, 1-9

Abstract: The soil water balance can be solved for evapotranspiration (ET) using soil water change in storage data from either weighing lysimetry or soil water sensing and measurement, along with data on the other components of the water balance. Weighing lysimeters are expensive and, although accurate, are difficult to manage and afford little replication. Direct soil water measurement by coring is accurate enough, but plagued by spatial variability that induces unwanted variability in the change in soil water storage between dates, and is destructive and time/labor consuming. Here we focus on soil water sensing using the neutron probe and various electromagnetic (EM) sensors (capacitance, time domain reflectometry (TDR) and quasi-TDR) with respect to the relative levels of uncertainty in profile water content, change in soil water storage, and estimates of deep flux; and their impact on estimated ET and water use efficiency (WUE). Studies consistently showed errors up to and >0.05m3m−3 for capacitance sensors used in access tubes, which implied errors in soil water flux estimation of up to 50mmday−1, and calibrations that were so sensitive to soil bulk electrical conductivity (σdc) and temperature that water content and change in storage estimates were rendered unreliable. Also, larger spatial variability of water contents reported by capacitance sensors was tied to the EM field penetration in structured soils around access tubes being non-uniform and influenced by the random arrangement of soil micro-scale water content, σdc and bulk density distribution. Thus, we recommend that profiling sensor systems based on capacitance technology not be used for studies of water balance, ET and WUE, nor for irrigation scheduling. Recommended methods include the neutron probe, direct volumetric soil sampling and, in some cases, conventional time domain reflectometry with waveform capture and analysis. New sensor development efforts should focus on waveguide approaches using TDR technology.

Keywords: Soil water content; Measurement; Sensing; Accuracy; Irrigation scheduling; ET; Water use efficiency (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741100326X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:104:y:2012:i:c:p:1-9

DOI: 10.1016/j.agwat.2011.12.002

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:1-9