A new distributed rainfall-runoff (DR2) model based on soil saturation and runoff cumulative processes
M. López-Vicente and
A. Navas
Agricultural Water Management, 2012, vol. 104, issue C, 128-141
Abstract:
One important issue in agricultural management and hydrological research is the assessment of water stored during a rainfall event. In this study, a new GIS-based rainfall-runoff model is presented to estimate soil moisture status (SMS) for each month of the year after an average rainfall event with maximum intensity. The new model computes the volume of actual available water (Waa) downwards from divides, taking into account the different configurations of the upslope contributing area, infiltration processes and climatic parameters. Results show that the spatial distribution of the different soil types is the main controlling factor in the initiation of runoff and, to a lesser extent, the antecedent topsoil moisture and the volumetric water content of the soil at saturation. Monthly Waa and SMS maps and Palmer Z-indexes present similar spatial patterns, although the values and the extension of the different dry and wet categories varied considerably. Predominant wet conditions occurred in May, September, October, November and December and dry conditions appeared in February, March and July. The wettest conditions took place in gently sloping areas, according to the topographic wetness index. Maps based on Palmer Z-indexes match very closely the SMS patterns predicted by the DR2 model from January to September, but the similarity was poor from October to December. Spatial predictions with the new model identify the different sub-categories of soil wetness for each soil type in greater detail. The DR2 model seems to be of interest to monitor humidity variations and trends in time and space and to provide valuable information for sustainable soil and water resource management.
Keywords: Actual available water; Soil moisture status; DR2 model; Topsoil saturation; Cumulative runoff; Soil type; Palmer Z-index (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377411003313
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:104:y:2012:i:c:p:128-141
DOI: 10.1016/j.agwat.2011.12.007
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().