EconPapers    
Economics at your fingertips  
 

Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran

Poolad Karimi, Asad Sarwar Qureshi, Reza Bahramloo and David Molden

Agricultural Water Management, 2012, vol. 108, issue C, 52-60

Abstract: Groundwater irrigation consumes considerable energy as well as water resources across the globe. Using a case study from Iran, this paper explores how enhanced farm water management can help in reducing groundwater exploitation and subsequently limiting energy consumption and the carbon footprint of the groundwater economy. Groundwater use for irrigated agriculture in Iran has increased vastly over the last three decades. We estimate that groundwater pumping consumes 20.5billionkWh electricity and 2 billion liters of diesel and contributes to 3.6% of the total carbon emission of the country. Thus there is an opportunity to reduce energy use and carbon emissions by pumping less water. However, groundwater use remains important for food security. To identify opportunities for water conservation within agricultural fields, the SWAP model was applied to simulate crop growth and field water balance for three major irrigated crops, i.e. wheat, maize, and sugar beet in the Gamasiab River Basin, one of the highest groundwater using irrigated areas of Iran. The model simulations showed that by adopting improved irrigation schedules and improving farm application efficiencies, water productivity will increase, and irrigation water withdrawals from groundwater can be reduced significantly with no reduction in yields. While these improvements may or may not result in water saving and retarding the ground water decline, depending on the fate of excess application, they will have significant water quality, energy, and carbon implications. Such reduction in irrigation application can result in 40% decline in energy consumption and subsequently carbon emission of groundwater use.

Keywords: Groundwater; Climate change; SWAP model; Irrigation scheduling; Groundwater energy nexus; Water productivity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377411002423
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:108:y:2012:i:c:p:52-60

DOI: 10.1016/j.agwat.2011.09.001

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:108:y:2012:i:c:p:52-60