EconPapers    
Economics at your fingertips  
 

The roles of fruit sink in the regulation of gas exchange and water uptake: A case study for avocado

Avner Silber, Yair Israeli, Menashe Levi, Ami Keinan, George Chudi, Avner Golan, Michael Noy, Irit Levkovitch, Kfir Narkis, Amos Naor and Shmuel Assouline

Agricultural Water Management, 2013, vol. 116, issue C, 21-28

Abstract: The effects of drip irrigation frequency on ‘Hass’ avocado trees grown in lysimeters were examined. The experimental design comprised three irrigation frequencies: (a) pulsed irrigation (10–20min every 30min) throughout the day (Irg1); (b) one daily irrigation event beginning at night and terminated in the morning every day (Irg2); and (c) one irrigation event every two days (Irg3). Irrigation treatments induced significant differences in water availability in the root zone and in plant water uptake. The effects of the fruit sink on gas-exchange properties and water uptake were assessed by comparing the performance of fruiting and defruited avocado trees. Despite the higher vegetative growth of defruited trees, their daily water uptake was 40% lower than that of fruiting trees and therefore, crop load should play an important role on irrigation scheduling. Measurements of stomatal conductance (gs) and photosynthesis per unit leaf area (A) during two vegetative years were not in accordance with irrigation treatments or with diurnal changes in atmospheric conditions. Similar pattern was observed for the defruited trees. Leaf-carbohydrate concentrations in trees with and without fruits were lowest before sunrise, and increased during the day in different patterns. In defruited trees the carbohydrate concentrations increased steeply to a maximum around 09:00, while in fruiting trees, it increased monotonically until midday. Our findings may indicate that leaf-carbohydrate plausibly play a role in the complex framework of stomata aperture.

Keywords: Crop load; Irrigation frequency; Persea americana; Photosynthesis; Stem diameter; Stomatal conductance (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377412002533
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:116:y:2013:i:c:p:21-28

DOI: 10.1016/j.agwat.2012.10.006

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:21-28