EconPapers    
Economics at your fingertips  
 

An insight to the performance of crop water stress index for olive trees

N. Agam, Y. Cohen, J.A.J. Berni, V. Alchanatis, D. Kool, A. Dag, U. Yermiyahu and A. Ben-Gal

Agricultural Water Management, 2013, vol. 118, issue C, 79-86

Abstract: Optimization of olive oil quantity and quality requires finely tuned water management, as increased irrigation, up to a certain level, results in increasing yield, but a certain degree of stress improves oil quality. Monitoring tools that provide accurate information regarding orchard water status would therefore be beneficial. Amongst the various existing methods, those having high resolution, either temporally (i.e., continuous) or spatially, have the maximum adoption potential. One of the commonly used spatial methods is the Crop Water Stress Index (CWSI). The objective of this research was to test the ability of the CWSI to characterize water status dynamics of olive trees as they enter into and recover from stress, and on a diurnal scale. CWSI was tested in an empirical form and in two analytical configurations. In an experiment conducted in a lysimeter facility in the northwestern Negev, Israel, irrigation was withheld for 6 days for 5 of 15 trees, while daily irrigation continued for the rest of the trees. After resuming irrigation, the trees were monitored for 5 additional days. Water status measurements and thermal imaging were conducted daily between 12:00 and 14:00. Diurnal monitoring (predawn to after dusk) of the same indicators was conducted on the day of maximum stress. Continuous meteorological data were acquired throughout the experimental period. Empirical and analytical CWSI were calculated based on canopy temperature extracted from thermal images. The empirical CWSI differentiated between well watered and stressed trees, and depicted the water status dynamics during the drought and recovery periods as well as on a diurnal scale. Analytical approaches did not perform as well at either time scale. In conclusion, the empirical CWSI seems to be promising even given its limitations, while analytical forms of CWSI still require improvement before they can be used as a water status monitoring tool for olive orchards. Practically, it is proposed to compute the wet temperature analytically and set the dry temperature to 5°C higher than air temperature.

Keywords: Canopy temperature; Crop water stress index; Fully transpiring leaf; Non-transpiring leaf; Olive tree; Water status (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377412003186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:118:y:2013:i:c:p:79-86

DOI: 10.1016/j.agwat.2012.12.004

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:118:y:2013:i:c:p:79-86