Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards
Antonio Lidón,
Carlos Ramos,
Damián Ginestar and
Wilson Contreras
Agricultural Water Management, 2013, vol. 121, issue C, 42-53
Abstract:
A simple compartmental model using a tipping bucket approach for the water dynamics coupled with a nitrogen–carbon transformations model has been adapted to simulate the soil nitrogen and water balance in mature orange groves on a daily step. This model has been compared with the more mechanistic LEACHN model (the N module of the LEACHM model), which uses Richards’ equation to simulate soil water movement in unsaturated conditions, the convection–dispersion equation for solute transport, and that, in addition to including evapotranspiration, N transformations and N plant uptake as in the compartmental model, it also considers gaseous losses due to denitrification and ammonia volatilization, that are not considered in the compartmental model. This comparison was made using data from a three-year experiment in a citrus orchard with two nitrogen fertilization rates. After calibration using the first year data, a reasonable match between simulated and measured values in both models was observed for soil water storage in the whole profile for the validation period (2nd and 3rd year), but the agreement was not so good for the soil mineral nitrogen content. In spite of the differences in the nature and in the complexity of the two models, the soil water dynamics and drainage were well simulated during the whole period by both models. However, the LEACHN model predicted nitrate leaching better than the compartmental model, probably because it considers the nitrogen cycle in a more detailed way. This work is the first calibration and performance evaluation of the LEACHN model for citrus in the Mediterranean area and the results obtained in this study indicate that this model can be a valid tool to evaluate the effects of irrigation and N management on nitrate leaching. The compartmental model has a lower data requirement and calibration is less complex than the LEACHN model and, therefore, may be more appealing for advisory N management purposes.
Keywords: Soil nitrogen; Nitrate leaching; Soil water; Fertilization; Citrus; LEACHM (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377413000206
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:121:y:2013:i:c:p:42-53
DOI: 10.1016/j.agwat.2013.01.008
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().