EconPapers    
Economics at your fingertips  
 

Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida

S. Shukla, N.K. Shrestha, F.H. Jaber, S. Srivastava, T.A. Obreza and B.J. Boman

Agricultural Water Management, 2014, vol. 132, issue C, 1-9

Abstract: Evapotranspiration (ETc) fluxes from plastic mulch production systems are different than open field production systems and require quantification of ETc for plastic mulch environment. A 3-year study was conducted to quantify bi-weekly ETc and develop a crop coefficient (Kc) for drip-irrigated watermelon grown with plastic mulch in sub-tropical Florida using four large drainage lysimeters. The average seasonal ETc was 278mm (min=244mm and max=344mm). Variability in ETc was mainly influenced by rainfall, especially during the initial growth period when it was high. The initial, mid-season, and late season Kc values were 0.65, 1.01, and 0.71, respectively. The initial Kc was considerably higher than literature values. This finding was mainly due to high soil moisture at the beginning of the growing season resulting from surface application of water for plastic mulched raised bed preparation and additional wetting from rainfall that increased evaporative flux. The Kc values were statistically higher (p=0.008) than FAO-56, which underestimated ETc by 30%. A polynomial model was developed to predict Kc as a function of days after transplanting. To improve the ETc estimates for the first two bi-weekly periods when the large area of bare and wet soil results in significantly higher evaporation, a multivariate model (r2=0.78) was developed to predict the Kc as a function of rainfall and relative humidity. The model can be used to adjust Kc, and therefore ETc, for the initial stages when evaporation accounts for most of ETc and is sensitive to frequency of wetting. Use of Kc values from this study will help improve the accuracy of ETc estimates for drip-irrigated watermelon in subtropical Florida and elsewhere with similar environmental condition.

Keywords: Evaporation; Transpiration; Rainfall; Modeling; Drainage lysimeters; FAO-56 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377413002606
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:132:y:2014:i:c:p:1-9

DOI: 10.1016/j.agwat.2013.09.019

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:132:y:2014:i:c:p:1-9