The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment
Hayrettin Kuşçu,
Ahmet Turhan and
Ali Osman Demir
Agricultural Water Management, 2014, vol. 133, issue C, 92-103
Abstract:
Field studies were conducted to determine the response of processing tomato (Lycopersicon esculentum Mill.) to deficit irrigation (DI) to guide programs for the development of improved irrigation management practices for sub-humid zones. Field experiments were conducted in Bursa province, Turkey. Industrial tomato plants (cv. Shasta) were subjected to different levels of irrigation using a drip system in the field on a clay–loam Entisol soil for 2 years. Well-watered plants were irrigated at100% crop evapotranspiration (ETc) with 3-day intervals. In other treatments, irrigation was not applied during the vegetative, flowering, yield formation or ripening stages or during combinations of these stages. Fruit weight, marketable yield (MY) and net income decreased with decreases in the amount of irrigation depending on the irrigation timing, but the effect of soil water deficit on the shape index was minor. The highest MY and fruit weight were obtained with the full irrigation (100% ETc) treatment. Water deficit by non-irrigation during the flowering and/or yield formation stages substantially reduced MY values in both years. The results showed that full irrigation during the whole growing season is preferable for higher yield and net income. However, in regions of water scarcity, irrigation managers should adopt the DI approach to achieve economically sustainable crop production. As an alternative to full irrigation during the entire growing season, the application of full irrigation until the beginning of the fruit ripening stage and the cessation of full irrigation after that time can be recommended as optimal because it achieved irrigation water savings of 33%, an increase of 42% in irrigation water use efficiency (IWUE), a satisfactory fruit soluble solids content (SSC) and an acceptable net income with a yield loss of only approximately 5% compared with full irrigation.
Keywords: Tomato; Water deficit; Water productivity; Soluble solids; Net income (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377413003235
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:133:y:2014:i:c:p:92-103
DOI: 10.1016/j.agwat.2013.11.008
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().