EconPapers    
Economics at your fingertips  
 

Arundo donax water use and photosynthetic responses to drought and elevated CO2

Lloyd L. Nackley, Kristiina A. Vogt and Soo-Hyung Kim

Agricultural Water Management, 2014, vol. 136, issue C, 13-22

Abstract: Arundo donax L., commonly known as giant reed or Carrizo grande, has been identified as an excellent biomass feedstock, because of its high yields delivered from low nutrient inputs. Two criticisms of cultivating A. donax are that it has a history of biological invasion, and also that it may require great quantities of water to sustain its rapid growth. Yet, there is little research reported quantifying the water-use requirements; and it is unknown how growth and water-use will be altered by the atmospheric enrichment of carbon dioxide (CO2) in combination with drought, two environmental conditions that have been predicted to occur in regions where A. donax is cultivated or has colonized. An experiment using close-topped CO2 chambers was conducted to study the interactive effects of elevated CO2 and limited water on A. donax growth and leaf physiology. Enrichment of atmospheric CO2 from 400 to 800μmolmol−1 decreased transpiration rates by 100% (p<0.05). Reduced transpiration delayed drought responses and extended periods of assimilation, but ultimately could not prevent desiccation and photosynthetic decline during extreme drought. Reduced transpiration also increased water use efficiencies (WUE). A linear model created from whole-plant water use estimates A. donax consumption at 186,500 and 139,500L H2OMg−1 (11.65 and 8.72L H2OMJ−1), at 400μmolmol−1 or 800μmolmol−1 CO2 respectively. The improved WUE of plants grown in high CO2 was still less than values reported for Miscanthus, a C4 bioenergy feedstock. Moreover, comparisons between A. donax stable carbon isotope (13C) discrimination and values reported for other C3 species suggest that A. donax has relatively high conductance levels, and will likely transpire more water than most species. These findings present the first reported values for A. donax water-use in response to atmospheric enrichment of CO2.

Keywords: Bioenergy; Carbon isotope; Climate change; Conductance; Invasive plant; Transpiration (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377414000201
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:136:y:2014:i:c:p:13-22

DOI: 10.1016/j.agwat.2014.01.004

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:136:y:2014:i:c:p:13-22