EconPapers    
Economics at your fingertips  
 

Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China

Xuelian Jiang, Shaozhong Kang, Ling Tong, Fusheng Li, Donghao Li, Risheng Ding and Rangjian Qiu

Agricultural Water Management, 2014, vol. 142, issue C, 135-143

Abstract: In order to investigate crop coefficient (Kc) and evapotranspiration (ET) of grain maize modified by planting density, a field experiment was conducted from March to October in 2012 and 2013 in an arid region of northwest China. Five planting densities, i.e. 67,500, 82,500, 97,500, 112,500 and 127,500plantsha−1 were conducted in 2012, and a higher planting density of 142,500plantsha−1 was added in 2013. We introduced a density ratio (Kdensity) that is a function of leaf area index (LAI) to account for the effect of planting density on Kc, and the daily Kc can be computed by Kdensity multiplying Kc at the reference planting density (127,500plantsha−1). The Allen method considering an adjustment coefficient (Acm), the single and dual Kc methods considering a density coefficient (Kd), and Kdensity method were used to calculate Kc, and then the ET estimated by reference evapotranspiration and Kc was validated by the measured ET using the eddy covariance system in 2012 and 2013. Results showed that higher planting density increased ET and Kc and lowered soil evaporation and evaporation coefficient within the planting densities of the experiments. Daily ET estimated by the Allen method performed very well after the end of maize development stage, with mean bias error (MBE) of −0.06 and 0.12mmd−1, root mean square error (RMSE) of 0.84 and 0.80mmd−1 in 2012 and 2013 respectively. The single and dual Kc methods can better simulate the daily ET when actual LAI was below the maximum LAI. Compared to the three above-mentioned methods, the Kdensity method had higher accuracy in estimating daily ET over the whole stage, with higher R2 and lower MBE and RMSE, indicating that Kdensity method had better performance in calculating daily ET under different planting densities of grain maize.

Keywords: Crop coefficient; Evapotranspiration; Density coefficient; Density ratio (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377414001565
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:142:y:2014:i:c:p:135-143

DOI: 10.1016/j.agwat.2014.05.006

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:142:y:2014:i:c:p:135-143