EconPapers    
Economics at your fingertips  
 

Modification of water movement equations in the PRZM3 for simulating pesticides in soil profile

Masoud Noshadi and Sajad Jamshidi

Agricultural Water Management, 2014, vol. 143, issue C, 38-47

Abstract: In the area of simulating pesticide transportation in soil profile, the majority of models adhere to simplification techniques and due to this, the simulation achieved does not reflect the reality. One such commonly used model in this regard is PRZM3. In the present research, to ensure improved results, in addition to a general software update, modified equations concerning water movement in soil were applied. To achieve this, one of the most exact numerical solutions (MC-Cormack method) was selected for solving water movement equation (Richard's equation). This equation was then rewritten in the form of mobile-immobile (MIM), and the Shuffled Complex Evaluation (SCE) method for calculating mobile-immobile coefficients was also added to the model. Following model modification, this was used to simulate 2,4-D concentration, and the results were then compared with the results of the main model and measured data (Noshadi et al., 2011) in two different treatments (normal irrigation and deficit irrigation). Considering the statistics, in the normal irrigation treatment for PRZM3, the figure for NRMSE (normalized root mean square error), CRM (coefficient of residual mass) and d (index of agreement) accounted for 0.58, 0.78 and −0.47, respectively while the figures reported in the modified model using MC-Cormack method (PRZM3-MC) were 0.79, 0.28 and −0.04, and in the modified model using MIM form (PRZM3-MC-MIM) they were 0.86, 0.23 and −0.06. Regarding deficit irrigation treatment, for PRZM3, the figure for NRMSE, CRM and d accounted for 0.65, 0.52 and 0.08, respectively while the figures reported in the modified model using PRZM3-MC were 0.77, 0.38 and −0.24 and in PRZM3-MC-MIM they were 0.73, 0.36 and −0.24, respectively. Simulation results reveal that compared to PRZM3, results were more accurate after model modification using PRZM3-MC and PRZM3-MC-MIM.

Keywords: 2,4-D; Soil water content; Mobile-immobile; MC-Cormack (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741400122X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:143:y:2014:i:c:p:38-47

DOI: 10.1016/j.agwat.2014.04.011

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:143:y:2014:i:c:p:38-47