Exploring irrigation behavior at Delta, Utah using hidden Markov models
Sanyogita Andriyas and
Mac McKee
Agricultural Water Management, 2014, vol. 143, issue C, 48-58
Abstract:
In on-demand irrigation systems, canal operators divert water from rivers to be delivered to the fields after receiving a water order from a farmer. These water orders are the result of a farmer's decision to irrigate. If farmers’ irrigation decisions could be better anticipated, it might be possible to improve canal operations using improved future short-term water demand estimates. The importance of how farmers make these irrigation decisions, however, is often overlooked because of their high variability and unpredictable nature. A hidden Markov model (HMM) was built to analyze irrigation decision behavior of farmers and make forecasts of their future decisions. The model inputs were relatively easily measured, or estimated, biophysical data, including such factors (i.e., those variables which are believed to affect irrigation decision-making) as cumulative evapotranspiration, depletion, soil stress coefficient, and canal flows. Irrigation decision series were the hidden states for the model. The paper evaluates data from the Canal B region of the Lower Sevier River Basin, near Delta, Utah. The main crops of the region are alfalfa, barley, and corn. A portion of the data was used to build and test the model capability to explore that factor and the level at which the farmer takes the decision to irrigate for future irrigation events. It was found that the farmers cannot be classified into certain classes based on their irrigation decisions, but varies in their behavior from irrigation-to-irrigation across all years and crops. The factors and the level selected can be adequately used to explore the future irrigation decisions in the short term. HMMs can be used as a tool to analyze what factor and, subsequently, what level of that factor the farmer most likely based the irrigation decision on. This was possible only when the maximum likelihood (ML) estimates of model parameters were known based on the historical evidence. The study shows that the HMM is a capable tool to study irrigation behavior which is not a memory-less process.
Keywords: Decision; Markov; Viterbi; States; Probability (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377414001863
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:143:y:2014:i:c:p:48-58
DOI: 10.1016/j.agwat.2014.06.010
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().