Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices
K.K. Bandyopadhyay,
S. Pradhan,
R.N. Sahoo,
Ravender Singh,
V.K. Gupta,
D.K. Joshi and
A.K. Sutradhar
Agricultural Water Management, 2014, vol. 146, issue C, 115-123
Abstract:
There is a need to characterize the water stress in wheat using suitable indices, which will help us to find out the water stress sensitive period for efficient use of irrigation water. Recently indices based on canopy spectral reflectance, which are non destructive, fast and reliable, are being used effectively to characterize the water stress. A field experiment was carried out during the year 2010–2012 in split plot design with four levels of irrigation (irrigation at 0.4 IW/CPE, 0.6 IW/CPE, 0.8 IW/CPE and 1.0 IW/CPE, IW=6cm) as main plot factors and three sources of nitrogen (100%N from urea, 50% N from urea and 50% N from farmyard manure (FYM) and 100% N from FYM) as subplot factors. The objective of the study was to find out the water stress indices best correlated with wheat grain and biomass yield, to determine the optimum growth stage for measurement of water stress indices and to predict the grain and biomass yield of wheat based on water stress indices. The canopy reflectance was measured in the spectral range of 350–2500nm with 1nm bandwidth with the help of hand held ASD FieldSpec Spectroradiometer at seven phenostages, viz., crown root initiation (CRI), tillering, booting, flowering, milk, soft dough and harvesting stage. Then different water stress indices were computed as: water index (WI)=R970/R900, normalized water index-1 (NWI-1)=(R970−R900)/(R970+R900), normalized water index-2 (NWI-2)=(R970−R850)/(R970+R850), normalized water index-3 (NWI-3)=(R970−R920)/(R970+R920), normalized water index-4 (NWI-4)=(R970−R880)/(R970+R880), where R and the subscript numbers indicate the light reflectance at the specific wavelength (in nm). It was observed that spectral reflectance based water indices recorded at the milk stage, WI and NWI-1 were significantly negatively correlated with the grain yield and NWI-1 and NWI-3 were significantly negatively correlated with the biomass yield of wheat, having maximum correlation coefficients. Validation of regression model based on NWI-1 could account for the maximum 87.5% variation in the observed grain yield and the regression model based on WI could account for maximum 89.2% variation in the observed biomass yield of wheat with minimum root mean square errors. So the regression models based on NWI-1 and WI recorded at milk stage can be successfully used to predict the grain and biomass yield of wheat in advance.
Keywords: Wheat; Canopy reflectance; Water index; Normalized water index; Yield prediction (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377414002169
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:146:y:2014:i:c:p:115-123
DOI: 10.1016/j.agwat.2014.07.017
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().