The effect of mineral-ion interactions on soil hydraulic conductivity
Maya C. Buelow,
Kerri Steenwerth and
Sanjai J. Parikh
Agricultural Water Management, 2015, vol. 152, issue C, 277-285
Abstract:
The reuse of winery wastewater (WW) could provide an alternative water source for vineyard irrigation. The shift of many wineries and other food processing industries to K+-based cleaners requires studies on the effects of K+ on soil hydraulic conductivity (HC). Depending on clay content and mineral composition, K+ additions can affect the HC either positively or negatively. Soil mineralogy was anticipated to exhibit a strong influence on HC responses and, therefore, soils of contrasting mineralogy were evaluated for changes in soil HC resulting from applications of solutions elevated in Na+ and K+. To examine the impact of mineral-ion relationships on HC, soils dominant in montmorillonite, vermiculite, or kaolinite from the Napa and Lodi wine regions of California, were packed into soil columns to observe changes in leachate chemistry and HC. Irrigation with Na+- and K+-rich WW was simulated by applying solutions at sodium absorption ratio (SAR) values of 3, 6, and 9 and potassium absorption ratio (PAR) values of 1, 2, 4, and 9. While HC was reduced in the 2:1 clay soils (montmorillonite and vermiculite) for all SAR treatments, the vermiculite and the kaolinite rich soils exhibited equal or greater reductions in HC for PAR treatments, as compared with the SAR treatments. Findings from this evaluation of the interaction of Na+ and K+ with three different mineral soils suggest that the reuse of WW with increasing PAR are least problematic for montmorillonite dominated soils and most detrimental to the HC of the vermiculite dominated soil. The presence of minerals with a high affinity for K+ (e.g., vermiculite, mica) in this soil suggest that the interlayer binding of K+ could lead to greater reductions in HC. Full analysis of soil and WW is recommended prior to all land applications.
Keywords: Mineralogy; Salinity; Winery; Wastewater reuse; Vineyard; Irrigation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415000244
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:152:y:2015:i:c:p:277-285
DOI: 10.1016/j.agwat.2015.01.015
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().